If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-15x^2+900=0
a = -15; b = 0; c = +900;
Δ = b2-4ac
Δ = 02-4·(-15)·900
Δ = 54000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{54000}=\sqrt{3600*15}=\sqrt{3600}*\sqrt{15}=60\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60\sqrt{15}}{2*-15}=\frac{0-60\sqrt{15}}{-30} =-\frac{60\sqrt{15}}{-30} =-\frac{2\sqrt{15}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60\sqrt{15}}{2*-15}=\frac{0+60\sqrt{15}}{-30} =\frac{60\sqrt{15}}{-30} =\frac{2\sqrt{15}}{-1} $
| 23-8x=-6x+3 | | 8x+6=6x+1 | | 7m-9(m=4) | | 4p+2p=5p+3 | | -70=-10+4a | | 25b+15=7b+24 | | 6m+3=9-6m | | x+10=8x-2 | | a/3+4=6. | | 20=x^2+(2x)^2 | | 2x-x=1+x+x | | -22+30p=11p-22 | | 4w=280 | | X=1,5x | | 6m-7(-7m+4)=33-6m | | 3x^2-5x+6.25=16.25 | | g-31=7 | | -4p+27=-3p-2(3p+4) | | -b-2b-3b+4=68 | | 7-5/2x=23 | | -n/2+1=-8n+(7n+n) | | 3x/2x+3/x=1 | | 35+k=-2(4k-4) | | P=Fd/T | | y-(y-5)/2=2 | | -8a-22=-3(4a-2) | | 14+2(x-5)=3(2x+7)-5 | | 6x-25=180 | | 7x+5=5x-9= | | X-5+3y=0 | | 6x-36=180 | | 3(x-3)=2-(x+11) |